使用循环神经网络(RNN)实现影评情感分类

作为对循环神经网络的实践,我用循环神经网络做了个影评情感的分类,即判断影评的感情色彩是正面的,还是负面的。
选择使用RNN来做情感分类,主要是因为影评是一段文字,是序列的,而RNN对序列的支持比较好,能够“记忆”前文。虽然可以提取特征词向量,然后交给传统机器学习模型或全连接神经网络去做,也能取得很好的效果,但只从端对端的角度来看的话,RNN无疑是最合适的。
以下介绍实现过程。
一、数据预处理
本文中使用的训练数据集为https://www.cs.cornell.edu/people/pabo/movie-review-data/上的sentence polarity dataset v1.0,包含正负面评论各5331条。可以点击进行下载。
数据下载下来之后需要进行解压,得到rt-polarity.neg和rt-polarity.pos文件,这两个文件是Windows-1252编码的,先将它转成unicode处理起来会更方便。
补充一下小知识,当我们打开一个文件,发现乱码,却又不知道该文件的编码是什么的时候,可以使用python的chardet类库进行判断,这里的Windows-1252就是使用该类库检测出来的。
在数据预处理部分,我们要完成如下处理过程:
1.转码
即将文件转为unicode编码,方便我们后续操作。读取文件,转换编码,重新写入到新文件即可。不存在技术难点。
2.生成词汇表
读取训练文件,提取出所有的单词,并统计各个单词出现的次数。为了避免低频词的干扰,同时减少模型参数,我们只保留部分高频词,比如这里我只保存出现次数前9999个,同时将低频词标识符
3.借助词汇表将影评转化为词向量
单词是没法直接输入给模型的,所以我们需要将词汇表中的每个单词对应于一个编号,将影评数据转化成词向量。方便后面生成词嵌入矩阵。
4.填充词向量并转化为np数组
因为不同评论的长度是不同的,我们要组成batch进行训练,就需要先将其长度统一。这里我选择以最长的影评为标准,对其他较短的影评的空白部分进行填充。然后将其转化成numpy的数组。
5.按比例划分数据集
按照机器学习的惯例,数据集应被划分为三份,即训练集、开发集和测试集。当然,有时也会只划分两份,即只包括训练集和开发集。
这里我划分成三份,训练集、开发集和测试集的占比为[0.8,0.1,0.1]。划分的方式为轮盘赌法,在numpy中可以使用cumsum和searchsorted来简洁地实现轮盘赌法。
6.打乱数据集,写入文件
为了取得更好的训练效果,将数据集随机打乱。为了保证在训练和模型调整的过程中训练集、开发集、测试集不发生改变,将三个数据集写入到文件中,使用的时候从文件中读取。
下面贴上数据预处理的代码,注释写的很细,就不多说了。
# -*- coding: utf-8 -*-
# @Time : 18-3-14 下午2:28
# @Author : AaronJny
# @Email : Aaron__7@163.com
import sys
reload(sys)
sys.setdefaultencoding('utf8')
import collections
import settings
import utils
import numpy as np
def create_vocab():
"""
创建词汇表,写入文件中
:return:
"""
# 存放出现的所有单词
word_list = []
# 从文件中读取数据,拆分单词
with open(settings.NEG_TXT, 'r') as f:
f_lines = f.readlines()
for line in f_lines:
words = line.strip().split()
word_list.extend(words)
with open(settings.POS_TXT, 'r') as f:
f_lines = f.readlines()
for line in f_lines:
words = line.strip().split()
word_list.extend(words)
# 统计单词出现的次数
counter = collections.Counter(word_list)
sorted_words = sorted(counter.items(), key=lambda x: x[1], reverse=True)
# 选取高频词
word_list = [word[0] for word in sorted_words]
word_list = [''] + word_list[:settings.VOCAB_SIZE - 1]
# 将词汇表写入文件中
with open(settings.VOCAB_PATH, 'w') as f:
for word in word_list:
f.write(word + '\n')
def create_vec(txt_path, vec_path):
"""
根据词汇表生成词向量
:param txt_path: 影评文件路径
:param vec_path: 输出词向量路径
:return:
"""
# 获取单词到编号的映射
word2id = utils.read_word_to_id_dict()
# 将语句转化成向量
vec = []
with open(txt_path, 'r') as f:
f_lines = f.readlines()
for line in f_lines:
tmp_vec = [str(utils.get_id_by_word(word, word2id)) for word in line.strip().split()]
vec.append(tmp_vec)
# 写入文件中
with open(vec_path, 'w') as f:
for tmp_vec in vec:
f.write(' '.join(tmp_vec) + '\n')
def cut_train_dev_test():
"""
使用轮盘赌法,划分训练集、开发集和测试集
打乱,并写入不同文件中
:return:
"""
# 三个位置分别存放训练、开发、测试
data = [[], [], []]
labels = [[], [], []]
# 累加概率 rate [0.8,0.1,0.1] cumsum_rate [0.8,0.9,1.0]
rate = np.array([settings.TRAIN_RATE, settings.DEV_RATE, settings.TEST_RATE])
cumsum_rate = np.cumsum(rate)
# 使用轮盘赌法划分数据集
with open(settings.POS_VEC, 'r') as f:
f_lines = f.readlines()
for line in f_lines:
tmp_data = [int(word) for word in line.strip().split()]
tmp_label = [1, ]
index = int(np.searchsorted(cumsum_rate, np.random.rand(1) * 1.0))
data[index].append(tmp_data)
labels[index].append(tmp_label)
with open(settings.NEG_VEC, 'r') as f:
f_lines = f.readlines()
for line in f_lines:
tmp_data = [int(word) for word in line.strip().split()]
tmp_label = [0, ]
index = int(np.searchsorted(cumsum_rate, np.random.rand(1) * 1.0))
data[index].append(tmp_data)
labels[index].append(tmp_label)
# 计算一下实际上分割出来的比例
print '最终分割比例', np.array([map(len, data)], dtype=np.float32) / sum(map(len, data))
# 打乱数据,写入到文件中
shuffle_data(data[0], labels[0], settings.TRAIN_DATA)
shuffle_data(data[1], labels[1], settings.DEV_DATA)
shuffle_data(data[2], labels[2], settings.TEST_DATA)
def shuffle_data(x, y, path):
"""
填充数据,生成np数组
打乱数据,写入文件中
:param x: 数据
:param y: 标签
:param path: 保存路径
:return:
"""
# 计算影评的大长度
maxlen = max(map(len, x))
# 填充数据
data = np.zeros([len(x), maxlen], dtype=np.int32)
for row in range(len(x)):
data[row, :len(x[row])] = x[row]
label = np.array(y)
# 打乱数据
state = np.random.get_state()
np.random.shuffle(data)
np.random.set_state(state)
np.random.shuffle(label)
# 保存数据
np.save(path + '_data', data)
np.save(path + '_labels', label)
def decode_file(infile, outfile):
"""
将文件的编码从'Windows-1252'转为Unicode
:param infile: 输入文件路径
:param outfile: 输出文件路径
:return:
"""
with open(infile, 'r') as f:
txt = f.read().decode('Windows-1252')
with open(outfile, 'w') as f:
f.write(txt)
if __name__ == '__main__':
# 解码文件
decode_file(settings.ORIGIN_POS, settings.POS_TXT)
decode_file(settings.ORIGIN_NEG, settings.NEG_TXT)
# 创建词汇表
create_vocab()
# 生成词向量
create_vec(settings.NEG_TXT, settings.NEG_VEC)
create_vec(settings.POS_TXT, settings.POS_VEC)
# 划分数据集
cut_train_dev_test()
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
网站标题:基于循环神经网络(RNN)实现影评情感分类-创新互联
当前URL:http://www.scyingshan.cn/article/dedjds.html


咨询
建站咨询
